In [1]:
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

from nnfwtbn import Variable, correlation_matrix
from nnfwtbn import toydata
In [2]:
df = toydata.get()
In [3]:
v_higgs_m = Variable(r"$m^H$", "higgs_m", "GeV")
v_jet_1_pt = Variable(r"$p_{\mathrm{T}}^{j_1}$", "jet_1_pt", "GeV")
v_jet_2_pt = Variable(r"$p_{\mathrm{T}}^{j_2}$", "jet_2_pt", "GeV")
v_m_jj = Variable(r"$m^{jj}$", "m_jj", "GeV")
v_jet_1_eta = Variable(r"$\eta^{j_1}$" ,"jet_1_eta") 
v_jet_2_eta = Variable(r"$\eta^{j_2}$" ,"jet_2_eta")
v_tau_pt = Variable(r"$p_{\mathrm{T}}^{\tau}$", "tau_pt", "GeV")
v_lep_pt = Variable(r"$p_{\mathrm{T}}^{\ell}$", "lep_pt", "GeV")
In [4]:
fig, axes = plt.subplots(figsize=(5, 4.5))
correlation_matrix(df, [v_jet_1_pt, v_jet_2_pt, v_m_jj, v_higgs_m,
                        v_tau_pt, v_lep_pt, v_jet_1_eta, v_jet_2_eta],
                  figure=fig, axes=axes)
Out[4]:
$p_{\mathrm{T}}^{j_1}$ $p_{\mathrm{T}}^{j_2}$ $m^{jj}$ $m^H$ $p_{\mathrm{T}}^{\tau}$ $p_{\mathrm{T}}^{\ell}$ $\eta^{j_1}$ $\eta^{j_2}$
$p_{\mathrm{T}}^{j_1}$ 1.000000 0.319978 0.211387 -0.007761 -0.065800 -0.071961 0.011964 0.013058
$p_{\mathrm{T}}^{j_2}$ 0.319978 1.000000 0.368783 0.159946 -0.010026 -0.000068 0.016535 0.004242
$m^{jj}$ 0.211387 0.368783 1.000000 0.456126 0.015672 0.000365 0.002525 0.004646
$m^H$ -0.007761 0.159946 0.456126 1.000000 0.237944 -0.011807 0.002297 0.015111
$p_{\mathrm{T}}^{\tau}$ -0.065800 -0.010026 0.015672 0.237944 1.000000 -0.120521 0.001576 0.006336
$p_{\mathrm{T}}^{\ell}$ -0.071961 -0.000068 0.000365 -0.011807 -0.120521 1.000000 -0.009070 0.006785
$\eta^{j_1}$ 0.011964 0.016535 0.002525 0.002297 0.001576 -0.009070 1.000000 0.569375
$\eta^{j_2}$ 0.013058 0.004242 0.004646 0.015111 0.006336 0.006785 0.569375 1.000000